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Introduction

● We now have databases with hundreds of thousands of 
spectra (RAVE, SDSS), which will soon become hundreds 
of millions (GAIA).

● Manual analysis is impossible.

● Therefore, we need highly efficient techniques to 
automatically extract physical parameters from observed 
spectra.

●The most obvious: compare observations with a database 
(”grid”) of synthetic spectra.



  

The process of creating spectra
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A synthetic spectrum Teff=5500, logg = 4.5, [M/Mo] = 0



  

Current trends: 1D vs 3D

● 1D models use a precalculated solution of the ERT with 
tabulated opacities to compute line shape.

● Fast and reliable

● Static 

● Don't account for some of the interesting physics: 
convection (  errors in Teff ) and time-dependent →
phenomena.

● Need for ”fudge” parameters (e.g. for turbulence)



  

Current trends: 1D vs 3D
● 3D models solve the full hydrodynamic problem 
(equations of conservation of mass & energy) with 
tabulated opacities.

● They are better.

● Time-dependent solutions.

● Physics ”emerge” naturally, without need for ”fudge” 
parameters.

● Very slow, unsuitable for large-scale work (15 min/line!).

● Highly nonlinear problem.



  



  



  



  

1D models: PP vs Spherical

At the core of every 1D model is the Equation of 
Radiative Transfer:
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d =dr is the optical depth of the medium.



  

PHOENIX (Hautschild)

● Developed by P. Hautschild (H. Sternwarte);

● plane-parallel or spherical, heavily NLTE.

● static or (up to relativistic!) expanding media;

● opacity for ca. 592 million lines (42 atomic, 550 molecular);

● Code not available; must run on his computers.

http://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html



  

MARCS

● Developed by B. Gustafsson et al (University of Uppsala);

● plane-parallel or spherical, LTE.

● only pre-calculated models and low-res fluxes! You have to 
calculate spectra with your own software;

● roughly comparable with Kurucz models;

●  Code not available.

http://marcs.astro.uu.se/



  

The Kurucz ”family”
● Developed by R. Kurucz (Harvard) in the early 70s; precursor 
of several modern methods.

● Plane-parallel, (mostly) LTE models. Many simplifications to 
optimize code for speed.

● Metallicities scaled to solar (ATLAS 9) or individually 
changeable (ATLAS 12).

● Large line database (162 million lines!).

● All code and data publicly available. Active community with 
several support mailing lists.

● Scarce documentation, confusing I/O, non-standard code . . .
http://kurucz.harvard.edu/



  

Creating a Kurucz model

where

Flux:

is the exponential integral function.
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Integrating the ERT gives us several magnitudes as a 
function of depth in the photosphere.



  

Creating a Kurucz model 2

Average intensity:

Radiation pressure:

J =1/2∫
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S E1t−dt−1/2∫0



S E1−tdt

P=1/ 2∫
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S E3−tdt

The source function is a kernel that contains all 
the information about the radiation field.



  

Creating a Kurucz model 3
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In the presence of both absorption and scattering,

S depends on J,

but

J depends on S.

Solution: iterative methods. But, how to begin?



  

Creating a Kurucz model 4
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Assuming the absorption coefficient      does 
not depend on ν , the source function can be 
written as



  

Creating a Kurucz model 5

We need to compute observables such as flux 
Fn(t). Flux depends on source function Sn(t). So:

● 1. We compute an initial S by means of a Gray 
model;

● 2. we use the result from the ERT to compute 
average intensity J, flux, etc.;

● 3. we use J to re-compute S;
● 4. we repeat the procedure until getting 

convergence.



  

Creating a Kurucz spectrum

In real atmospheres, spectral lines get broadened
 by different physical phenomena. Kurucz uses:

● Quantum (radiative) broadening: due to the 
Uncertainty Principle. Affects all lines.

● Stark broadening: Caused by protons and free 
electrons. Affects most lines specially in hot stars.

● Van der Waals broadening. Caused by neutral H. 
Affects most lines in cold stars



  

Creating a Kurucz spectrum 2

Broadening profiles are convolved with each other, 
the result being a Voigt function H(a,v), where 

a=
R SW

4D

Is the width of the profile.



  

Creating a Kurucz spectrum 3

For each depth, Kurucz assumes that a line profile is given by

k =[
 e2

mc
N
Z

1

gf

1

D
][e−E /kT

][H a ,][1−e−h / kT ]

All factors after the first are <1, so if the first 
is <0.001, the line is discarded.
If not:
● The line is accepted and the procedure repeated;
● the continuum opacity is calculated and added;
● intensity at every wavelength is calculated, with 
the ERT.
● We jump to the next depth.



  

Creating a Kurucz spectrum 4

The spectrum is the convolved with a rotation 
profile and an instrumental one, to account for 
rotational broadening and limited instrumental 
resolution. The result is the final spectrum.



  

Kurucz spectrum vs observed



  

Conclusions

● Synthetic spectra are a rapidly-evolving tool for an extremely 
demanding task;

● The future is in full HD 3D ab-initio models; however, 1D will 
be mostly used for the next few years;

● There is a wide choice of 1D model/spectrum suites, but the 
ones whose code is public spur the most development.

● We are bound to see a lot happening in this field yet.



  

Hvala!
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