

Mullard Space Science Laboratory University College London

Observations of particle acceleration in the blast waves of Gamma Ray Bursts

Peter A. Curran

with Rhaana Starling, Alexander van der Horst, Ralph Wijers, Phil Evans, Mat Page

Discovery: Vela Satellites

OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

RAY W. KLEBESADEL, IAN B. STRONG, AND ROY A. OLSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Received 1973 March 16; revised 1973 April 2

Prompt emission

Intense, short-lived, gammaray sources

Most luminous sources in the Universe... for a very brief period

UCL

 \Rightarrow small size (~ $c \Delta t$)

Cosmological sources

Multi-wavelength afterglows

Afterglow (X-ray - optical - radio) observable for weeks/months/years

Multi-wavelength afterglows

Afterglow light curve

(Klose et al. 2004)

Note: log-log plots

(Smith et al. 2005)

Two (almost) distinct classes

Short/Hard bursts: Various host galaxies/No host Binary mergers (BH,NS) Long/Soft bursts: Associated young host galaxies Core collapse supernova Massive, low-metalicity progenitors

Progenitors of long GRBs

Collapse of massive, low-metalicity, rapidlyrotating **Wolf-Rayet stars** (Hot, massive, strong winds)

Long GRBs: Collapsar & Supernova LOCL

The blast wave

Fermi acceleration of electrons

Electrons are accelerated by shock...

See http://www.cfa.harvard.edu/~ukeshet/Research.html for movie

Fermi acceleration of electrons

Electrons are accelerated by shock... to a certain distribution

Value of *p* dependent on the underlying plasma physics! Single value of *p*? Distribution of *p*? What distribution?

Synchrotron spectra

Accelerated electrons spiral in randomly structured magnetic field

UCL

 \Rightarrow emit via synchrotron radiation

(Sari et al. 1998)

Synchrotron spectra

Other blast wave parameters

p - electron energy distribution index (Fermi; N(E) ~ E^{-p}) k - circumburst density profile $(\rho \sim r^{-k})$

Blast wave light curves

Derivation of p

light curves $\rightarrow p(\alpha, k, q)$ & accuracy of temporal fit \Rightarrow multiple options

light curves $\rightarrow p(\alpha, k, q)$ & accuracy of temporal fit \Rightarrow multiple options

optical SED
$$\rightarrow p(\beta_{opt}, E_{B-V})$$

 \Rightarrow multiple options

light curves $\rightarrow p(\alpha, k, q)$ & accuracy of temporal fit \Rightarrow multiple options

optical SED
$$\rightarrow p(\beta_{opt}, E_{B-V})$$

 \Rightarrow multiple options

X-ray SED
$$\rightarrow p(\beta_X, N_H)$$

 \Rightarrow multiple options

â

(Curran et al. 2009)

Compare predictions of these values of *p* to light curves & spectra to:

- Decide which value of *p* is correct
- Test blast wave model
- Derive other blast wave parameters (q, k)

Electron energy distribution index, p

Discrete or distributed?

(Curran et al. 2009; Starling et al. 2008)

(Starling et al. 2008; Curran et al. 2009)

Distribution of X-ray spectral index, β_X

Transforming p to β_{χ}

Transforming p to β_{χ}

Fermi acceleration of electrons

- **Q:** Single value of *p*? Distribution of *p*? What distribution?
- A: Gaussian distribution at p=2.39 and standard deviation, $\sigma=0.6$

Why only 1 peak?

... by a totally independent method

★ GRBs probe plasma physics 13 billion light years away... as well as general relativity, cosmology & electromagnetism!

* The blast wave model explains GRBs quite well

* **p** is <u>not</u> consistent with a single, discrete value * **p** is consistent with Gaussian of $p \sim 2.35$, $\sigma \sim 0.6$

* 94% of GRBs: cooling frequency below the X-rays?