Spiral Structure in Galaxies

Maruška Žerjal

Seminar

April 2010

Adviser: prof. dr. Tomaž Zwitter

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

▶ < 불 ▶ 불 ∽ < < April 2010 1 / 31

イロト イボト イヨト イヨト

Galactic Dynamics

- The Lin-Shu Density Wave Theory
 - Small-Amplitude Orbital Perturbations
 - The Stability of the Spiral Structure
 - Corotation and Lindblad Resonances
 - I Spiral Arms
- Mapping the Milky Way Galaxy
 - A Large-Scale Structure of the Milky Way Galaxy

Conclusion

Morphological classification scheme of galaxies

- Galaxies: a rich variety of shapes
- In 1926: Edwin Hubble's morphological classification scheme
- Elliptical galaxies
- Spiral galaxies
 - 'Normal'
 - Barred (60 %)
- Lenticulars and irregulars

An Introduction

Face-on view of the Whirlpool Galaxy (M51)

Edge-on view

- Multi-component disk plane: 5 - 100 kpc in diameter
- Vertical scale heights of the disk: only a few percents of its radii

- Thin disk: young stars, gas and dust
- Central bulge: mostly old stars
- Spherical halo ($r \sim 100 \; {\rm kpc}$): old stars, globular clusters
- Dark matter halo $(r \sim 230 \text{ kpc})$
- $\bullet~\mbox{Mass:}~10^9-10^{12}~\ensuremath{\mathrm{M}_{\odot}}$

イロト イポト イヨト イヨト

• Number of stars: $10^9 - 10^{12}$

Rotational curve

• A circular Keplerian orbit:

$$v = \sqrt{\frac{GM(r)}{r}}$$

- A: extension of a visible mass
- But: Rotation curve for r > R is constant!
- B: extension of a dark matter
- Rotational velocities vary with the morphology.

• $v_{min} = 50 - 100 \text{ km s}^{-1}$ for the development of a well-organized spiral pattern.

Spiral Structure in Galaxies

The Winding Problem

- Material arms
- Differential rotation of the disk
- After only a few periods: arms wound too tightly to be observed

Spiral Structure in Galaxies

Density Waves

- 1960's: C. C. Lin and Frank Shu: long-lived quasistatic density waves
- $\bullet\,$ Enhanced density by 10 20 %
- Frame of reference
- Stars, gas and dust travel on their orbits through the waves, triggering star formation

• Jeans criterion
$$M_c > \left(\frac{5k_BT}{G\mu m_H}\right)^{3/2} \left(\frac{3}{4\pi \rho_0}\right)^{1/2}$$

• The hypothesis: only large-scale regular structure

Frame of reference

Inertial frame (S):

- Velocity of a quasistatic density wave: Ω_{gp}
- $\Omega_C = \Omega_{gp}$ corotation with a density wave

Noninertial frame (S'):

- Galaxy is rotating with Ω_{gp}
- The spiral pattern seems to be stationary
- Star C corotates with the wave

Axial Symmetric Gravitational Potential

- Inertial frame, the potential is stationary
- Only collisionless stellar component ($N = 10^{11}$ stars)
- We neglect the potential of the spiral waves.
- An effective gravitational potential (cylindrical coordinates (r, φ, z)):

$$\Phi_{eff}(r,z) = \Phi(r,z) + \frac{J_z^2}{2r^2},$$

$$\Phi(r,z) = U/m, \quad m\frac{d^2\mathbf{r}}{dt^2} = -\nabla U(r,z)$$

• The minimum Φ_{eff}^0 : orbit of the star is perfectly circular, $(r = R_m, z = 0)$

April 2010 10 / 31

イロト (得) (ほ) (ほ) - ほ

The perturbation analysis

• Only the first order of perturbation

• $\rho = r - R_m$

$$\Phi_{eff}(r,z)\simeq \Phi_{eff}^0+rac{1}{2}\kappa^2
ho^2+rac{1}{2}
u^2z^2$$

$$\kappa^2 \equiv \frac{\partial^2 \Phi_{eff}}{\partial r^2}|_m, \qquad \nu^2 \equiv \frac{\partial^2 \Phi_{eff}}{\partial z^2}|_m$$

• κ : the epicycle frequency, ν : the oscillation frequency

• Equations of harmonic motion:

$$\ddot{\rho} \simeq -\kappa^2 \rho, \qquad \ddot{z} \simeq -\nu^2 z$$

Solution:

$$\rho(t) = A_R \sin \kappa t,$$

$$z(t) = A_z \sin (\nu t + \zeta)$$

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

April 2010 11 / 31

The perturbation analysis

• The difference between the azimuthal position of the star and the equilibrium point: $\chi(t)$

$$\dot{\varphi} = \frac{v_{\varphi}}{r(t)} = \frac{J_z}{r(t)^2}$$

$$r(t) = R_m + \rho(t) = R_m (1 + \rho(t)/R_m)$$

For $\rho(t) \ll R_m$:

$$\dot{\varphi} \approx \frac{J_z}{R_m^2} \left(1 - 2\frac{\rho(t)}{R_m} \right)$$
$$\chi(t) \equiv \left(\varphi(t) - \left(\varphi_0 + \Omega t \right) \right) R_m$$
$$\rightarrow \quad \chi(t) = \frac{2\Omega}{\kappa} A_R \cos \kappa t$$

<ロト < 同ト < 巨ト < 巨ト

Epicycles

• Oscillation around the equilibrium position (*R_m*, 0)

$$\rho(t) = A_R \sin \kappa t,$$

$$\chi(t) = \frac{2\Omega}{\kappa} A_R \cos \kappa t$$

- Inertial frame: most stellar orbits are not closed; the rosette pattern → epicycles
- Center of the epicycle: the equilibrium position, rotating around the center of the galaxy with Ω

Closed Orbits in Noninertial Frames

- Number of oscillations per orbit in inertial frame: $N = \frac{\kappa}{\Omega}$
- If N is an integer, orbit is closed
- Closed orbit in noninertial frame (Ω_{lp} relative to the inertial frame): We choose frame in which star completes n orbits and m epicycle oscillations (m and n are integers)

• We choose
$$m(\Omega-\Omega_{lp})=n\kappa$$
 or

$$\Omega_{lp}(r) = \Omega(r) - \frac{n}{m}\kappa(r)$$

• Only selected modes ((n, m) = (1, 2)) are most common to be observed

April 2010 14 / 31

The Spiral Pattern

- A large number of stars at various distances r: Ω_{gp}
- If $\Omega_{lp} \neq \Omega_{lp}(r)$, then we can set $\Omega_{gp} = \Omega_{lp}$.
- From the Earth: patterns could be nested with their major axis aligned
- Rotation of the major axis: trailing two-armed grand-design spiral wave pattern
- Rotation in the opposite sense: leading arms

イロト イポト イヨト イヨト

Maruška Žerjal (Seminar)

The Stability of the Spiral Structure

- For (n, m) = (1, 2): $\Omega_{lp}(r) = \Omega(r) - \frac{\kappa(r)}{2}$; $\Omega_{lp} \neq ?\Omega_{lp}(r), \exists ?$ appropriate Ω_{gp}
- The most frequent systems: two-armed with m = 2, flat rotation velocity, just like the Ω_{lp}
- Observations: large-scale, regular spiral structure should be quasistationary if the dynamics of the disk is dominated by one mode or by a very small number of modes

• Presence of gas is essential for spiral structure (star formation)

Lindblad Resonances

- The potential of the arms
- When star encounters a density wave with χ_{max} : resonance
- A_R and A_z are considerably increased
- \bullet Perturbations acumulate, if star enters the density wave with χ_{\max} each time
- Analogy with the spring oscillation
- In resonance: more likely for gas clouds to collide and for the dissipation of the energy \rightarrow damping in spiral waves
- $\Omega = \Omega(r) \rightarrow$ only certain radii with a resonance:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

Lindblad Resonances

• $\Omega_{lp} = \Omega - \kappa/2 = \Omega_{gp} \ (n/m = 1/2)$: inner Lindblad resonance at several radii

• $\Omega = \Omega_{gp}$: a corotation resonance • $\Omega + \kappa/2 = \Omega_{gp}$: an outer Lindblad resonance

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

April 2010 18 / 31

Lindblad Resonances (NGC 4340)

- Variation in number and shape of galactic arms
- Grand-design spirals: only two very symmetric arms
- 10 % of grand-design spirals, 60 % of multiple-armed galaxies and 30 % of flocculent galaxies
- Visible wavelengths: domination by spiral pattern due to very luminous O and B main-sequence stars and HII regions
- $t_{\star} = 10^7 \text{ yr} < t_{gx} = 23 \cdot 10^7 \text{ yr} \rightarrow \text{spiral pattern: regions of active star formation}$
- •

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

Spiral Arms

<ロト <部ト < 注ト < 注ト</p>

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

April 2010 21 / 31

E

- Variation in number and shape of galactic arms
- Grand-design spirals: only two very symmetric arms
- 10 % of grand-design spirals, 60 % of multiple-armed galaxies and 30 % of flocculent galaxies
- Visible wavelengths: domination by spiral pattern due to very luminous O and B main-sequence stars and HII regions
- $t_{\star} = 10^7 \text{ yr} < t_{g_X} = 23 \cdot 10^7 \text{ yr} \rightarrow \text{spiral pattern: regions of active star formation}$
- Trailing spiral arms in most cases; but in galaxy NGC 4622: one leading spiral arm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

Spiral Arms - NGC 4622: one leading arm

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

 ▶ ▲ ■ ▶ ■
 ⇒
 ⇒
 ⇒

 >

 >

 >

 <th </

イロト イボト イヨト イヨト

Spiral Arms - NGC 4622: one leading arm

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

April 2010 24 / 31

<ロト <部ト <きト <きト = き

- Variation in number and shape of galactic arms
- Grand-design spirals: only two very symmetric arms
- 10 % of grand-design spirals, 60 % of multiple-armed galaxies and 30 % of flocculent galaxies
- Visible wavelengths: domination by spiral pattern due to very luminous O and B main-sequence stars and HII regions
- $t_{\star} = 10^7 \text{ yr} < t_{gx} = 23 \cdot 10^7 \text{ yr} \rightarrow \text{spiral pattern: regions of active star formation}$
- Trailing spiral arms in most cases; but in galaxy NGC 4622: one leading spiral arm
- An important role in galactic evolution: galactic bar

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

Spiral Arms - Barred Spiral Galaxy NGC 1300

Barred Spiral Galaxy NGC 1300

26 / 31

Mapping the Milky Way Galaxy

Mapping the Milky Way Galaxy

- The large-scale structure: somehow misterious
- We are positioned inside the galactic plane
- Obscurity of the extensive dust clouds
- GLIMPSE surveys: archived over 100 million stars

Spiral Structure in Galaxies

Mapping the Milky Way Galaxy

Mapping the Milky Way Galaxy

- Power-law exponent of stars per magnitude per square degree versus magnitude: bump: a northern arm of a central bar
- An enhancement of stars along the Galactic midplane toward the Scutum-Centaurus arm; no increase towards the Sagittarius arm

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

Some of the most fundamental physical parameters of our Galaxy

- Number of stars: $\sim 10^{11}$
- $\bullet\,$ Stellar mass of the thin disk: $10^{10}-10^{11}~{\rm M}_\odot$
- Multi-component disk plane: 50 ${
 m kpc}$ in diameter
- Sun's distance to the Galactic center: $8-8.5~{
 m kpc}~(7.62\pm0.32~{
 m kpc})$
- Vertical scale height (thin disk): $\sim 350~{\rm pc}$ (1.4 % of its radii); thick disk: (1 ${\rm kpc}$ or 4 % of disk's radii)
- Radius of dark-matter halo: 230 kpc
- Type SBbc, grand-designed two-armed barred spiral

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

Maruška Žerjal (Seminar)

Spiral Structure in Galaxies

▶ < 불 ▶ 불 ∽ < < April 2010 30 / 31

Conclusion

Conclusion

- Arms are not material (winding problem)
- The Lin-Shu density wave theory
- Small-amplitude orbital perturbations
- In the first order: epicycles
- Nested and rotated oval-shaped orbits, spiral pattern
- Several resonant radii
- Spiral pattern is associated with the star-forming regions
- Difficulties with revealing the spiral pattern of our Galaxy
- The Milky Way Galaxy: SBbc